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Abstract 
Modern tracking codes have very stringent 

requirements concerning space charge calculations. They 

should combine speed of calculations, in order to track 

particles for many turns (e.g. the LHC injection chain), 

with numerical accuracy while maintaining symplecticity. 

Grid solvers and modified Green's function algorithms 

have been compared, and upgrades were suggested.  

INTRODUCTION 

Multiple-particle tracking allows for accurate space 

charge (SC) beam simulations and design. However, in 

the particle-in-cell (PIC) formalism [1], spatial non-

physical grid effects may jeopardize the validity of 

modeling in accelerator rings and colliders, especially 

during multi-turn particle tracking. To remedy artificial 

grid noise, PIC codes increasingly use more macro-

particles, denser grids, and more SC kicks per bunch, 

requiring massive parallelization. Even so, numerical 

errors persist. The split operator method itself (unlike the 

general PIC paradigm) decouples three-dimensional (3D) 

SC forces and dynamics, possibly resulting in additional 

errors and faulty estimates of instabilities, dynamic 

aperture, emittance growth, etc. Recent numerical 

experiments demonstrated artificial noise due to mesh 

effects and interpolation, leading to micro-scale beam 

instability [2]. 

The situation can be improved in two ways. First, we 

perfect the components of the PIC formalism itself. We 

will develop a grid density module, suppressing numerical 

noise to upgrade the accuracy of Poisson solvers. 

Secondly, we avoid spatial grids entirely, because despite 

precautions the grid-related noise will always persist. The 

known grid-free SC solvers are based on the classic 

Green's function or direct Vlasov solvers (we are aware 

only of axi-symmetric ones) [3], but they are too slow for 

multiple particle tracking in rings and work only in free 

space without boundaries. Instead, we introduce hybrid 

SC solvers based on “space-charge templates”, which 

represent macro Green’s functions for macro-elements [4-

5], from which a large family of beam distributions can be 

built. These SC templates calculate the 3D self-forces of a 

beam in the presence of conducting boundaries. 

There is a gap in terms of generality and performance 

between fast but over-simplified “frozen” models and 

standard PIC codes. The proposed hybrid SC solvers fill 

that gap: they are more flexible than “frozen” models and 

approach the accuracy of PICs while being much faster. 

Template-based solvers can simulate rather arbitrary beam 

distributions within conducting boundaries and may be 

parallelized, boosting their performance even further. 

ACCURACY OF MULTIPLE-PARTICLE 

TRACKING BY PICS 

The computational flows of multiple-particle tracking 

codes are similar, and our analyses of the accuracy and 

performance of their components have much in common. 

PIC Computational Modules  

Each macro-particle in a 3D beam has six phase space 

coordinates, and a step-by-step evolution of the ensemble 

of N macro-particles X=(x1, x'1, y1, y'1, z1, z'1,, xN, x'N, 

yN, y'N, zN, z'N) looks like the following: 
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Here the trajectories are integrated either by multi-step 

(2nd order leap-frog, or higher order) schemes, or 

symplectic maps, which are more customary for multi-

turn modeling in the rings. These higher order maps take 

into account non-linearities of the lattice and SC forces, 

and they trace particles with any prescribed accuracy in 

the framework of the single particle approximation [6].  

Contemporary Poisson solvers are able to derive nearly 

exact grid solutions by multi-grid techniques, assuming 

that the input, i.e. the grid density, is known exactly. The 

interpolation between grid nodes is also very accurate. 

Unfortunately, the grid density is evaluated only 

approximately, and moreover, it represents the main 

source of numerical noise in (1). We need to find 

remedies to manage this. 

Space Charge Density on the Grid  

The Cloud-In-Cell (CIC) technique was developed 

decades ago (see [1] and references therein). If a spatial 

grid has dimensions of NxNyNz and meshes hxhyhz , 

then the macro-particle sizes are x,y,z=hx,y,z (≥0.5). A 

redistribution of elementary space charge among grid 

nodes must satisfy a conservation of space charge and 

should converge for higher order interpolations. A linear 

scheme is used in ORBIT, WARP, and Synergia codes. A 

quadratic interpolation is also possible. 

Using finite clouds with bell-like shape functions is 

beyond linear/quadratic interpolation. One needs an 

infinite polynomial series to represent them. For example, 

Fig. 1 shows a family of one dimensional (1D) clouds: 
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Figure 1: Macroparticle clouds in CIC scheme. All clouds have 

different ramps, but carry the same space charge "q". 

As shown in [7], the integrals k=


a
S k()d  are: 
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and so on for 5,6(,a). In our algorithm, the choice of 

the cloud may vary from the beam center to the edges. 

Figs. 2 illustrate SC density of 10
5
 macro-particles within 

40cm×40cm boundary, Nx=Ny=128 and different sizes of 

macro-particles for the cloud S3(). 

 

          

            

       
Figure 2: Contour plot (top), 3D space charge densities (middle) 

for =1, 4;  and corresponding fields Ex,y  (bottom) for =4.  

 

For  =1 and 4, contour lines and 3D plots are very 

different (~15%). The potentials, as integrals of densities 

differ by < 0.01%. The field differences drop from 3% to 

less than 0.01% for  =1 and 4 respectively [10]. 

SPACE CHARGE TEMPLATES 

 A concept of space charge templates was introduced in 

[5,8]. The templates are macro-elements reproducing an 

original beam; their fields are derived from the library of 

template fields via superposition. A family of beam 

distributions built by templates is rather general but 

always has elliptical cross-sections along "z". See Fig. 3. 

 

 
Figure 3: 3D beam bunches within a round cylindrical pipe of 4 

cm in diameter (not shown). An ellipsoid 1cm1cm10cm (left) 

and an arbitrary 3D beam (right). Both bunches are "sliced" 

longitudinally by templates. 

In earlier versions of space charge templates, the fields 

of a 3D beam were calculated, using a library of charged 

disks/slices with pre-assigned density distributions.  

A more universal way to model a composite structure of 

real charge distributions is to use template-rings [9,10]. 

The 3D potential in free space  is 

xxxxx ~/~)~()(   dutmp  . 

For the particular case of a round ring of the outer 

radius Rtmp  and the inner radius Rtmp-dR (dRtmp stands for 

the thickness) with constant surface density tmp, the 

potential becomes: 
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leading to analytical formulae for the longitudinal field 

on the axis [9]. We used this equation along with 

successive over-relaxation (SOR 3D) technique, which 

solves the Poisson equation with and without boundaries. 

For illustration, the potentials of a positively charged 

disk of R=0.01 m, a negatively charged disk of R=0.007 

m, a ring, as a superposition of these disks and a ring field 

are plotted in Fig. 4 (left). Template fields, representing a 

beam from right part of Fig. 3 are plotted in Fig. 4 (right). 

 

     
Figure 4: Potentials and a field of disks/ring in free space (left). 

Template potentials of a beam from right part of Fig. 3 (right). 

 

We benchmarked the results for a 3D 1cm1cm10cm 

ellipsoid, carrying a uniformly distributed space charge of 

Q=10
-11

 C, placed into a conducting pipe of 4 cm in 

diameter. The results obtained for disk and for ring 

templates agreed very well. Figs. 5 shows the same 

potential and fields as in [11, p.407] at xoff=yoff=0, obtained 

by SOR 3D, for distributions from Figs. 3. For longer 

bunches with semiaxes 1cm1cm50cm, the field flattens 

in the middle and “ear-fields” appear at the edges. 



       

     
Figure 5: Potentials and fields of 3D ellipsoids with 

1cm1cm10cm (top), and 1cm1cm50cm (bottom). 

Fig. 5 suggests that non-linear behavior of longitudinal 

field becomes very strong due to image forces (in free 

space, a uniformly charged 3D ellipsoid has linear fields). 

A Gaussian 3D beam of ellipsoidal shape in free space 

has an analytical form of Ex,y,z fields (the so-called 

“frozen” SC model). The presence of a boundary changes 

them dramatically, limiting their applicability in tracking 

codes. We refer especially to the longitudinal field Ez, 

which is most affected by image forces.  

     

       
Figure 6: Transverse rms profiles <x2>1/2(z), <y2>1/2(z) (left) and 

shape functions Sx,y(z), defining the template shell (right). 

The number of templates for accurate space charge 

calculations is a free parameter. For a beam depicted in 

Figs. 3, one needs 15-20 templates. "Thick" slices may 

also be helpful to deal with very long bunches. 

 

            
Figure 7: Disk templates (left), built from rings. Ring templates 

for the outer layer of beam bunch (right). 

 

For a real 3D bunch consisting of macro-particles, Figs. 

6 demonstrate the procedure to find shape functions 

Sx,y(z), determining the shell containing all templates, and 

Fig. 7 illustrates how ring templates reproduce the beam. 

Halo and Hollow Beams  

For high-brightness accelerators (HL-LHC, ESS), beam 

loss control is critical, and generally must obey "the 

1W/m rule" [12]. While losses may be less than 0.1%, the 

halo (from which most losses come) may contain a much 

larger fraction of a beam, and fields from halo particles 

can't be neglected.  Numerical noise from halo particles in 

a regular grid-based PIC may well be unacceptable. 

     
Figure 8: A transversal cross-section of an arbitrary “made-up” 

hollow beam with a halo, represented by a library of ring 

templates. An ideal Gaussian beam distribution is a dashed line. 

Ring templates are quite appropriate for halo as well as 

hollow beam field calculations, as shown in Fig. 8. 

Having disk templates, a special distribution like that 

would be difficult to reproduce. 

DISCUSSION 

The goal of this paper is to evaluate accuracies of SC 

tracking codes for rings, to develop a strategy to suppress 

artificial numerical effects, and ultimately, to improve 

code performance. The errors in SC fields will always 

persist due to granularity of space charge distribution, and 

inaccuracies of grid density calculations will dominate 

other errors: a grid Poisson solver and field interpolation 

and of course those of higher order tracking engines.  

A decrease of grid dimensions (larger meshes) damps 

density fluctuations. The same is valid for larger CIC 

clouds. However, these fluctuations may be physical, and 

such a brute force remedy simply eliminates them. A 

beam halo requires special treatment. 

The split operator paradigm is valid for very long 

bunches (a coasting beam approximation, as in PSR, 

SNS). For shorter bunches, a more accurate approach is 

required, based on templates and hybrid technique [5,10]. 
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